Note
Go to the end to download the full example code.
Quality Metrics Tutorial
After spike sorting, you might want to validate the ‘goodness’ of the sorted units. This can be done using the
qualitymetrics submodule, which computes several quality metrics of the sorted units.
import spikeinterface.core as si
from spikeinterface.qualitymetrics import (
compute_snrs,
compute_firing_rates,
compute_isi_violations,
compute_quality_metrics,
)
First, let’s generate a simulated recording and sorting
recording, sorting = si.generate_ground_truth_recording()
print(recording)
print(sorting)
GroundTruthRecording (InjectTemplatesRecording): 4 channels - 25.0kHz - 1 segments
250,000 samples - 10.00s - float32 dtype - 3.81 MiB
GroundTruthSorting (NumpySorting): 10 units - 1 segments - 25.0kHz
Create SortingAnalyzer
For quality metrics we need first to create a SortingAnalyzer.
analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory")
print(analyzer)
estimate_sparsity (no parallelization): 0%| | 0/10 [00:00<?, ?it/s]
estimate_sparsity (no parallelization): 100%|██████████| 10/10 [00:00<00:00, 393.72it/s]
SortingAnalyzer: 4 channels - 10 units - 1 segments - memory - sparse - has recording
Loaded 0 extensions
Depending on which metrics we want to compute we will need first to compute some necessary extensions. (if not computed an error message will be raised)
analyzer.compute("random_spikes", method="uniform", max_spikes_per_unit=600, seed=2205)
analyzer.compute("waveforms", ms_before=1.3, ms_after=2.6, n_jobs=2)
analyzer.compute("templates", operators=["average", "median", "std"])
analyzer.compute("noise_levels")
print(analyzer)
compute_waveforms (workers: 2 processes): 0%| | 0/10 [00:00<?, ?it/s]
compute_waveforms (workers: 2 processes): 20%|██ | 2/10 [00:00<00:00, 15.22it/s]
compute_waveforms (workers: 2 processes): 100%|██████████| 10/10 [00:00<00:00, 52.11it/s]
noise_level (no parallelization): 0%| | 0/20 [00:00<?, ?it/s]
noise_level (no parallelization): 100%|██████████| 20/20 [00:00<00:00, 234.09it/s]
SortingAnalyzer: 4 channels - 10 units - 1 segments - memory - sparse - has recording
Loaded 4 extensions: random_spikes, waveforms, templates, noise_levels
The spikeinterface.qualitymetrics submodule has a set of functions that allow users to compute
metrics in a compact and easy way. To compute a single metric, one can simply run one of the
quality metric functions as shown below. Each function has a variety of adjustable parameters that can be tuned.
firing_rates = compute_firing_rates(analyzer)
print(firing_rates)
isi_violation_ratio, isi_violations_count = compute_isi_violations(analyzer)
print(isi_violation_ratio)
snrs = compute_snrs(analyzer)
print(snrs)
{np.str_('0'): 15.6, np.str_('1'): 17.0, np.str_('2'): 15.1, np.str_('3'): 13.3, np.str_('4'): 14.9, np.str_('5'): 13.9, np.str_('6'): 16.6, np.str_('7'): 13.0, np.str_('8'): 15.5, np.str_('9'): 15.3}
{np.str_('0'): np.float64(0.0), np.str_('1'): np.float64(0.0), np.str_('2'): np.float64(0.0), np.str_('3'): np.float64(0.0), np.str_('4'): np.float64(0.0), np.str_('5'): np.float64(0.0), np.str_('6'): np.float64(0.0), np.str_('7'): np.float64(0.0), np.str_('8'): np.float64(0.0), np.str_('9'): np.float64(0.0)}
{np.str_('0'): np.float64(19.842763186333524), np.str_('1'): np.float64(33.68840562009274), np.str_('2'): np.float64(10.035751713475044), np.str_('3'): np.float64(17.86917721264813), np.str_('4'): np.float64(2.6849621035396583), np.str_('5'): np.float64(38.87348761547684), np.str_('6'): np.float64(1.4315573794004424), np.str_('7'): np.float64(20.333775682383994), np.str_('8'): np.float64(14.231208226819527), np.str_('9'): np.float64(15.677888916359883)}
To compute more than one metric at once, we can use the compute_quality_metrics function and indicate
which metrics we want to compute. This will return a pandas dataframe:
metrics = compute_quality_metrics(analyzer, metric_names=["firing_rate", "snr", "amplitude_cutoff"])
print(metrics)
firing_rate snr amplitude_cutoff
0 15.6 19.842763 NaN
1 17.0 33.688406 NaN
2 15.1 10.035752 NaN
3 13.3 17.869177 NaN
4 14.9 2.684962 NaN
5 13.9 38.873488 NaN
6 16.6 1.431557 NaN
7 13.0 20.333776 NaN
8 15.5 14.231208 NaN
9 15.3 15.677889 NaN
Some metrics are based on the principal component scores, so the exwtension must be computed before. For instance:
analyzer.compute("principal_components", n_components=3, mode="by_channel_global", whiten=True)
metrics = compute_quality_metrics(
analyzer,
metric_names=[
"isolation_distance",
"d_prime",
],
)
print(metrics)
Fitting PCA: 0%| | 0/10 [00:00<?, ?it/s]
Fitting PCA: 100%|██████████| 10/10 [00:00<00:00, 206.22it/s]
Projecting waveforms: 0%| | 0/10 [00:00<?, ?it/s]
Projecting waveforms: 100%|██████████| 10/10 [00:00<00:00, 1230.36it/s]
calculate pc_metrics: 0%| | 0/10 [00:00<?, ?it/s]
calculate pc_metrics: 100%|██████████| 10/10 [00:00<00:00, 336.81it/s]
isolation_distance d_prime firing_rate amplitude_cutoff snr
0 402.497311 5.207557 15.6 NaN 19.842763
1 1410.143672 11.038832 17.0 NaN 33.688406
2 37.527535 0.792897 15.1 NaN 10.035752
3 473.263989 9.309678 13.3 NaN 17.869177
4 14.117576 2.207172 14.9 NaN 2.684962
5 126.037789 7.247826 13.9 NaN 38.873488
6 15.604535 2.521057 16.6 NaN 1.431557
7 97.521220 3.876010 13.0 NaN 20.333776
8 35.073803 1.551301 15.5 NaN 14.231208
9 156.284413 2.689595 15.3 NaN 15.677889
Total running time of the script: (0 minutes 0.500 seconds)