Curation Tutorial

After spike sorting and computing quality metrics, you can automatically curate the spike sorting output using the quality metrics that you have calculated.

Import the modules and/or functions necessary from spikeinterface

import spikeinterface.core as si

Let’s generate a simulated dataset, and imagine that the ground-truth sorting is in fact the output of a sorter.

recording, sorting = si.generate_ground_truth_recording()
print(recording)
print(sorting)
GroundTruthRecording (InjectTemplatesRecording): 4 channels - 25.0kHz - 1 segments
                      250,000 samples - 10.00s - float32 dtype - 3.81 MiB
GroundTruthSorting (NumpySorting): 10 units - 1 segments - 25.0kHz

Create SortingAnalyzer

For this example, we will need a SortingAnalyzer and some extensions to be computed first

analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory")
analyzer.compute(["random_spikes", "waveforms", "templates", "noise_levels"])

analyzer.compute("principal_components", n_components=3, mode="by_channel_local")
print(analyzer)
estimate_sparsity (no parallelization):   0%|          | 0/10 [00:00<?, ?it/s]
estimate_sparsity (no parallelization): 100%|██████████| 10/10 [00:00<00:00, 441.98it/s]

compute_waveforms (no parallelization):   0%|          | 0/10 [00:00<?, ?it/s]
compute_waveforms (no parallelization): 100%|██████████| 10/10 [00:00<00:00, 330.77it/s]

noise_level (no parallelization):   0%|          | 0/20 [00:00<?, ?it/s]
noise_level (no parallelization): 100%|██████████| 20/20 [00:00<00:00, 293.86it/s]

Fitting PCA:   0%|          | 0/10 [00:00<?, ?it/s]
Fitting PCA: 100%|██████████| 10/10 [00:00<00:00, 184.30it/s]

Projecting waveforms:   0%|          | 0/10 [00:00<?, ?it/s]
Projecting waveforms: 100%|██████████| 10/10 [00:00<00:00, 2681.61it/s]
SortingAnalyzer: 4 channels - 10 units - 1 segments - memory - sparse - has recording
Loaded 5 extensions: random_spikes, waveforms, templates, noise_levels, principal_components

Then we compute some quality metrics:

metrics_ext = analyzer.compute("quality_metrics", metric_names=["snr", "isi_violation", "nearest_neighbor"])
metrics = metrics_ext.get_data()
print(metrics)
         snr  isi_violations_ratio  ...  nn_hit_rate  nn_miss_rate
0  24.721626                   0.0  ...     0.863333      0.017343
1  25.442416                   0.0  ...     0.864964      0.013341
2  15.534016                   0.0  ...     0.803448      0.021507
3  20.788721                   0.0  ...     0.826667      0.016236
4   9.375301                   0.0  ...     0.776235      0.034252
5  10.881624                   0.0  ...     0.748466      0.032228
6  10.267156                   0.0  ...     0.755357      0.019963
7  18.613390                   0.0  ...     0.779141      0.026453
8  30.078575                   0.0  ...     0.921569      0.008506
9  46.093940                   0.0  ...     0.955986      0.001651

[10 rows x 5 columns]

We can now threshold each quality metric and select units based on some rules.

The easiest and most intuitive way is to use boolean masking with a dataframe.

Then create a list of unit ids that we want to keep

keep_mask = (metrics["snr"] > 7.5) & (metrics["isi_violations_ratio"] < 0.2) & (metrics["nn_hit_rate"] > 0.80)
print(keep_mask)

keep_unit_ids = keep_mask[keep_mask].index.values
keep_unit_ids = [unit_id for unit_id in keep_unit_ids]
print(keep_unit_ids)
0     True
1     True
2     True
3     True
4    False
5    False
6    False
7    False
8     True
9     True
dtype: bool
['0', '1', '2', '3', '8', '9']

And now let’s create a sorting that contains only curated units and save it.

curated_sorting = sorting.select_units(keep_unit_ids)
print(curated_sorting)


curated_sorting.save(folder="curated_sorting", overwrite=True)
GroundTruthSorting (UnitsSelectionSorting): 6 units - 1 segments - 25.0kHz
NumpyFolder (NumpyFolderSorting): 6 units - 1 segments - 25.0kHz
Unit IDs
    ['0' '1' '2' '3' '8' '9']
Annotations
  • name : GroundTruthSorting
Properties
    gt_unit_locations[[ 4.3227587 -6.640719 10.757289 ] [-7.865891 0.10104907 38.665146 ] [22.932158 10.015579 15.330166 ] [ 3.1780353 -8.758842 15.3981695 ] [ 1.688519 29.238663 15.8081045 ] [20.822628 28.82151 5.222585 ]]


We can also save the analyzer with only theses units

clean_analyzer = analyzer.select_units(unit_ids=keep_unit_ids, format="zarr", folder="clean_analyzer")

print(clean_analyzer)
SortingAnalyzer: 4 channels - 6 units - 1 segments - zarr - sparse - has recording
Loaded 6 extensions: random_spikes, waveforms, templates, noise_levels, principal_components, quality_metrics

Total running time of the script: (0 minutes 0.517 seconds)

Gallery generated by Sphinx-Gallery